Hands-on Exercise 4D - Funnel Plots for Fair Comparisons

Author

Cindy TA

1. Getting Started

1.1. Installing and launching packages

In this exercise, four R packages will be used. They are:

  • readr for importing csv into R.
  • FunnelPlotR for creating funnel plot.
  • ggplot2 for creating funnel plot manually.
  • knitr for building static html table. plotly for creating interactive funnel plot.
pacman::p_load(tidyverse, FunnelPlotR, plotly, knitr)

1.2. Importing data

In this section, COVID-19_DKI_Jakarta will be used.For this hands-on exercise, we are going to compare the cumulative COVID-19 cases and death by sub-district (i.e. kelurahan) as at 31st July 2021, DKI Jakarta.

The code chunk below imports the data into R and save it into a tibble data frame object called covid19.

covid19 <- read_csv("data/COVID-19_DKI_Jakarta.csv") %>%
  mutate_if(is.character, as.factor)
Rows: 267 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (3): City, District, Sub-district
dbl (4): Sub-district ID, Positive, Recovered, Death

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
covid19
# A tibble: 267 × 7
   `Sub-district ID` City       District `Sub-district` Positive Recovered Death
               <dbl> <fct>      <fct>    <fct>             <dbl>     <dbl> <dbl>
 1        3172051003 JAKARTA U… PADEMAN… ANCOL              1776      1691    26
 2        3173041007 JAKARTA B… TAMBORA  ANGKE              1783      1720    29
 3        3175041005 JAKARTA T… KRAMAT … BALE KAMBANG       2049      1964    31
 4        3175031003 JAKARTA T… JATINEG… BALI MESTER         827       797    13
 5        3175101006 JAKARTA T… CIPAYUNG BAMBU APUS         2866      2792    27
 6        3174031002 JAKARTA S… MAMPANG… BANGKA             1828      1757    26
 7        3175051002 JAKARTA T… PASAR R… BARU               2541      2433    37
 8        3175041004 JAKARTA T… KRAMAT … BATU AMPAR         3608      3445    68
 9        3171071002 JAKARTA P… TANAH A… BENDUNGAN HIL…     2012      1937    38
10        3175031002 JAKARTA T… JATINEG… BIDARA CINA        2900      2773    52
# ℹ 257 more rows

2. FunnelPlotR methods

FunnelPlotR package uses ggplot to generate funnel plots. It requires a numerator (events of interest), denominator (population to be considered) and group. The key arguments selected for customisation are:

  • limit: plot limits (95 or 99).
  • label_outliers: to label outliers (true or false).
  • Poisson_limits: to add Poisson limits to the plot.
  • OD_adjust: to add overdispersed limits to the plot.
  • xrange and yrange: to specify the range to display for axes, acts like a zoom function.
  • Other aesthetic components such as graph title, axis labels etc.

2.1. FunnelPlotR methods: The basic plot

funnel_plot(
  .data = covid19,
  numerator = Positive,
  denominator = Death,
  group = `Sub-district`
)

A funnel plot object with 267 points of which 0 are outliers. 
Plot is adjusted for overdispersion. 

A funnel plot object with 267 points of which 0 are outliers. Plot is adjusted for overdispersion.

Things to learn from the code chunk above. - group in this function is different from the scatterplot. Here, it defines the level of the points to be plotted i.e. Sub-district, District or City. If Cityc is chosen, there are only six data points. - By default, data_typeargument is “SR”. - limit: Plot limits, accepted values are: 95 or 99, corresponding to 95% or 99.8% quantiles of the distribution.

2.2. FunnelPlotR methods: Makeover 1

funnel_plot(
  .data = covid19,
  numerator = Death,
  denominator = Positive,
  group = `Sub-district`,
  data_type = "PR",     #<<
  xrange = c(0, 6500),  #<<
  yrange = c(0, 0.05)   #<<
)
Warning: The `xrange` argument deprecated; please use the `x_range` argument
instead.  For more options, see the help: `?funnel_plot`
Warning: The `yrange` argument deprecated; please use the `y_range` argument
instead.  For more options, see the help: `?funnel_plot`

A funnel plot object with 267 points of which 7 are outliers. 
Plot is adjusted for overdispersion. 

A funnel plot object with 267 points of which 7 are outliers. Plot is adjusted for overdispersion.

Things to learn from the code chunk above. + data_type argument is used to change from default “SR” to “PR” (i.e. proportions). + xrange and yrange are used to set the range of x-axis and y-axis

2.3. FunnelPlotR methods: Makeover 2

funnel_plot(
  .data = covid19,
  numerator = Death,
  denominator = Positive,
  group = `Sub-district`,
  data_type = "PR",   
  xrange = c(0, 6500),  
  yrange = c(0, 0.05),
  label = NA,
  title = "Cumulative COVID-19 Fatality Rate by Cumulative Total Number of COVID-19 Positive Cases", #<<           
  x_label = "Cumulative COVID-19 Positive Cases", #<<
  y_label = "Cumulative Fatality Rate"  #<<
)
Warning: The `xrange` argument deprecated; please use the `x_range` argument
instead.  For more options, see the help: `?funnel_plot`
Warning: The `yrange` argument deprecated; please use the `y_range` argument
instead.  For more options, see the help: `?funnel_plot`

A funnel plot object with 267 points of which 7 are outliers. 
Plot is adjusted for overdispersion. 

3. Funnel Plot for Fair Visual Comparison: ggplot2 methods

3.1. Computing the basic derived fields

To plot the funnel plot from scratch, we need to derive cumulative death rate and standard error of cumulative death rate.

df <- covid19 %>%
  mutate(rate = Death / Positive) %>%
  mutate(rate.se = sqrt((rate*(1-rate)) / (Positive))) %>%
  filter(rate > 0)

Next, the fit.mean is computed by using the code chunk below.

fit.mean <- weighted.mean(df$rate, 1/df$rate.se^2)

3.2. Calculate lower and upper limits for 95% and 99.9% CI

number.seq <- seq(1, max(df$Positive), 1)
number.ll95 <- fit.mean - 1.96 * sqrt((fit.mean*(1-fit.mean)) / (number.seq)) 
number.ul95 <- fit.mean + 1.96 * sqrt((fit.mean*(1-fit.mean)) / (number.seq)) 
number.ll999 <- fit.mean - 3.29 * sqrt((fit.mean*(1-fit.mean)) / (number.seq)) 
number.ul999 <- fit.mean + 3.29 * sqrt((fit.mean*(1-fit.mean)) / (number.seq)) 
dfCI <- data.frame(number.ll95, number.ul95, number.ll999, 
                   number.ul999, number.seq, fit.mean)

3.3. Plotting a static funnel plot

p <- ggplot(df, aes(x = Positive, y = rate)) +
  geom_point(alpha = 0.4) +
  
  geom_line(data = dfCI, 
            aes(x = number.seq, 
                y = number.ll95), 
            size = 0.4, 
            colour = "grey40", 
            linetype = "dashed") +
  geom_line(data = dfCI, 
            aes(x = number.seq, 
                y = number.ul95), 
            size = 0.4, 
            colour = "grey40", 
            linetype = "dashed") +
  geom_line(data = dfCI, 
            aes(x = number.seq, 
                y = number.ll999), 
            size = 0.4, 
            colour = "grey40") +
  geom_line(data = dfCI, 
            aes(x = number.seq, 
                y = number.ul999), 
            size = 0.4, 
            colour = "grey40") +
  geom_hline(data = dfCI, 
             aes(yintercept = fit.mean), 
             size = 0.4, 
             colour = "grey40") +
  coord_cartesian(ylim=c(0,0.05)) +
  annotate("text", x = 1, y = -0.13, label = "95%", size = 3, colour = "grey40") + 
  annotate("text", x = 4.5, y = -0.18, label = "99%", size = 3, colour = "grey40") + 
  ggtitle("Cumulative Fatality Rate by Cumulative Number of COVID-19 Cases") +
  xlab("Cumulative Number of COVID-19 Cases") + 
  ylab("Cumulative Fatality Rate") +
  theme_light() +
  theme(plot.title = element_text(size=12),
        legend.position.inside = c(0.91,0.85), 
        legend.title = element_text(size=7),
        legend.text = element_text(size=7),
        legend.background = element_rect(colour = "grey60", linetype = "dotted"),
        legend.key.height = unit(0.3, "cm"))
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
p

3.4. Interactive Funnel Plot: plotly + ggplot2

The funnel plot created using ggplot2 functions can be made interactive with ggplotly() of plotly r package.

fp_ggplotly <- ggplotly(p,
  tooltip = c("label", 
              "x", 
              "y"))
fp_ggplotly