Hands-on Exercise 3A - Programming Interactive Data Visualisation with R

Author

Cindy TA

3.1. Getting Started

pacman::p_load(ggiraph, plotly, 
               patchwork, DT, tidyverse) 

3.2. Importing data

Using the same dataset from Hands-on Exercise 02

exam_data <- read_csv("C:/Cindy-2312/ISSS608-VAA/Hands-on_Exercise/Hands-on_Ex02/data/Exam_data_2.csv")
Rows: 322 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (4): ID, CLASS, GENDER, RACE
dbl (3): ENGLISH, MATHS, SCIENCE

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

3.3. Interactive Data Visualisation - ggiraph methods

3.3.1.Tooltip effect with tooltip aesthetic

p <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(
    aes(tooltip = ID),
    stackgroups = TRUE, 
    binwidth = 1, 
    method = "histodot") +
  scale_y_continuous(NULL, 
                     breaks = NULL)
girafe(
  ggobj = p,
  width_svg = 6,
  height_svg = 6*0.618
)

3.3.2. Displaying multiple information on tooltip

exam_data$tooltip <- c(paste0(     
  "Name = ", exam_data$ID,         
  "\n Class = ", exam_data$CLASS)) 

p <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(
    aes(tooltip = exam_data$tooltip), 
    stackgroups = TRUE,
    binwidth = 1,
    method = "histodot") +
  scale_y_continuous(NULL,               
                     breaks = NULL)
girafe(
  ggobj = p,
  width_svg = 8,
  height_svg = 8*0.618
)

3.3.3. Customizing tooltip style

tooltip_css <- "background-color:white; #<<
font-style:bold; color:black;" #<<

p <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(              
    aes(tooltip = ID),                   
    stackgroups = TRUE,                  
    binwidth = 1,                        
    method = "histodot") +               
  scale_y_continuous(NULL,               
                     breaks = NULL)
girafe(                                  
  ggobj = p,                             
  width_svg = 6,                         
  height_svg = 6*0.618,
  options = list(    #<<
    opts_tooltip(    #<<
      css = tooltip_css)) #<<
)                                        

3.3.4. Displaying statistics on tooltip

tooltip <- function(y, ymax, accuracy = .01) {
  mean <- scales::number(y, accuracy = accuracy)
  sem <- scales::number(ymax - y, accuracy = accuracy)
  paste("Mean maths scores:", mean, "+/-", sem)
}

gg_point <- ggplot(data=exam_data, 
                   aes(x = RACE),
) +
  stat_summary(aes(y = MATHS, 
                   tooltip = after_stat(  
                     tooltip(y, ymax))),  
    fun.data = "mean_se", 
    geom = GeomInteractiveCol,  
    fill = "light blue"
  ) +
  stat_summary(aes(y = MATHS),
    fun.data = mean_se,
    geom = "errorbar", width = 0.2, size = 0.2
  )
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
girafe(ggobj = gg_point,
       width_svg = 8,
       height_svg = 8*0.618)

3.3.5. Hover effect with data_id aesthetic

p <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(           
    aes(data_id = CLASS),             
    stackgroups = TRUE,               
    binwidth = 1,                        
    method = "histodot") +               
  scale_y_continuous(NULL,               
                     breaks = NULL)
girafe(                                  
  ggobj = p,                             
  width_svg = 6,                         
  height_svg = 6*0.618                      
)                                        

3.3.6. Styling hover effect

p <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(              
    aes(data_id = CLASS),              
    stackgroups = TRUE,                  
    binwidth = 1,                        
    method = "histodot") +               
  scale_y_continuous(NULL,               
                     breaks = NULL)
girafe(                                  
  ggobj = p,                             
  width_svg = 6,                         
  height_svg = 6*0.618,
  options = list(                        
    opts_hover(css = "fill: #202020;"),  
    opts_hover_inv(css = "opacity:0.2;") 
  )                                        
)                                        

3.3.7. Combining tooltip and hover effect

p <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(              
    aes(tooltip = CLASS, 
        data_id = CLASS),              
    stackgroups = TRUE,                  
    binwidth = 1,                        
    method = "histodot") +               
  scale_y_continuous(NULL,               
                     breaks = NULL)
girafe(                                  
  ggobj = p,                             
  width_svg = 6,                         
  height_svg = 6*0.618,
  options = list(                        
    opts_hover(css = "fill: #202020;"),  
    opts_hover_inv(css = "opacity:0.2;") 
  )                                        
)                                        

3.3.8. Click effect with onclick

exam_data$onclick <- sprintf("window.open(\"%s%s\")",
"https://www.moe.gov.sg/schoolfinder?journey=Primary%20school",
as.character(exam_data$ID))

p <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(              
    aes(onclick = onclick),              
    stackgroups = TRUE,                  
    binwidth = 1,                        
    method = "histodot") +               
  scale_y_continuous(NULL,               
                     breaks = NULL)
girafe(                                  
  ggobj = p,                             
  width_svg = 6,                         
  height_svg = 6*0.618)                                        

3.3.9. Coordinated Multiple Views with ggiraph

p1 <- ggplot(data=exam_data, 
       aes(x = MATHS)) +
  geom_dotplot_interactive(              
    aes(data_id = ID),              
    stackgroups = TRUE,                  
    binwidth = 1,                        
    method = "histodot") +  
  coord_cartesian(xlim=c(0,100)) + 
  scale_y_continuous(NULL,               
                     breaks = NULL)

p2 <- ggplot(data=exam_data, 
       aes(x = ENGLISH)) +
  geom_dotplot_interactive(              
    aes(data_id = ID),              
    stackgroups = TRUE,                  
    binwidth = 1,                        
    method = "histodot") + 
  coord_cartesian(xlim=c(0,100)) + 
  scale_y_continuous(NULL,               
                     breaks = NULL)

girafe(code = print(p1 + p2), 
       width_svg = 6,
       height_svg = 3,
       options = list(
         opts_hover(css = "fill: #202020;"),
         opts_hover_inv(css = "opacity:0.2;")
         )
       ) 

3.4. Interactive Data Visualisation - plotly methods!

3.4.1. Creating an interactive scatter plot: plot_ly() method

plot_ly(data = exam_data, 
             x = ~MATHS, 
             y = ~ENGLISH)
No trace type specified:
  Based on info supplied, a 'scatter' trace seems appropriate.
  Read more about this trace type -> https://plotly.com/r/reference/#scatter
No scatter mode specifed:
  Setting the mode to markers
  Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode

3.4.2. Working with visual variable: plot_ly() method

plot_ly(data = exam_data, 
        x = ~ENGLISH, 
        y = ~MATHS, 
        color = ~RACE)
No trace type specified:
  Based on info supplied, a 'scatter' trace seems appropriate.
  Read more about this trace type -> https://plotly.com/r/reference/#scatter
No scatter mode specifed:
  Setting the mode to markers
  Read more about this attribute -> https://plotly.com/r/reference/#scatter-mode

3.4.3. Creating an interactive scatter plot: ggplotly() method

p <- ggplot(data=exam_data, 
            aes(x = MATHS,
                y = ENGLISH)) +
  geom_point(size=1) +
  coord_cartesian(xlim=c(0,100),
                  ylim=c(0,100))
ggplotly(p)

3.4.4. Coordinated Multiple Views with plotly

d <- highlight_key(exam_data)
p1 <- ggplot(data=d, 
            aes(x = MATHS,
                y = ENGLISH)) +
  geom_point(size=1) +
  coord_cartesian(xlim=c(0,100),
                  ylim=c(0,100))

p2 <- ggplot(data=d, 
            aes(x = MATHS,
                y = SCIENCE)) +
  geom_point(size=1) +
  coord_cartesian(xlim=c(0,100),
                  ylim=c(0,100))
subplot(ggplotly(p1),
        ggplotly(p2))

3.5. Interactive Data Visualisation - crosstalk methods!

3.5.1. Interactive Data Table: DT package

DT::datatable(exam_data, class= "compact")

3.5.2. Linked brushing: crosstalk method

d <- highlight_key(exam_data) 
p <- ggplot(d, 
            aes(ENGLISH, 
                MATHS)) + 
  geom_point(size=1) +
  coord_cartesian(xlim=c(0,100),
                  ylim=c(0,100))

gg <- highlight(ggplotly(p),        
                "plotly_selected")  

crosstalk::bscols(gg,               
                  DT::datatable(d), 
                  widths = 5)        
Setting the `off` event (i.e., 'plotly_deselect') to match the `on` event (i.e., 'plotly_selected'). You can change this default via the `highlight()` function.